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a b s t r a c t

The Cretaceous Period serves as a relevant model to understand greenhouse climate evolution. As
atmospheric CO2 concentrations continue to rise in the twenty-first century, critical questions put
forward are 1) how the Cretaceous Earth System could have been maintained in the “greenhouse” state,
if there are some variations, 2) why and how fast did climatic and palaeoenvironmental changes
happened during the Cretaceous, and 3) what records were preserved in the Earth’s archives that enable
the comparison of Cretaceous rates of paleoenvironmental changes with today’s global changes. In fact,
rapid and severe global environmental and climatic changes happened in the Cretaceous greenhouse
world including oceanic anoxic events, oceanic red beds, “cold snaps” or glaciations and carbonate
platform drowning events. This special issue originated from the final workshop of UNESCO International
Geoscience Program IGCP 555 and the Pardee session of the Geological Society of America 2010 annual
meeting. Participants and contributors mainly focused on the causes, processes, and consequences of
rapid environmental/climatic changes that happened in the Cretaceous greenhouse world.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Among the geosciences communities it has been recognized
that the Earth System was in a “greenhouse state” during the
Cretaceous time, which led to the distinctive term of “Cretaceous
World” (Skelton, 2003). The Cretaceous is also best known as the
time for occurrences of major geological events, such as Large
Igneous Provinces (LIPs) (Larson, 1991), Oceanic Anoxic Events
(OAEs, Schlanger and Jenkyns, 1976), Cretaceous Oceanic Red Beds
(CORBs, Hu et al., 2005; Wang et al., 2005), and carbonate platform
drowning events (Schlager, 1989). As atmospheric CO2 concentra-
tions rise during the twenty-first century, the “Cretaceous World”
will serve as a relevant model for a return to greenhouse climates
(Jenkyns, 2003; Hay, 2011). People are interested to know how the
Earth System could have been maintained in the “greenhouse”
state for a significant time interval, if there are distinct variations,
and how and why rapid climate changes happened during Creta-
ceous. As the Earth System is essentially composed of oceans and
continents, then the sedimentary records from marine and terres-
trial geological archives are widely investigated to resolve these
problems. Since 2006, the UNESCO International Geoscience
Program IGCP 555 was devoted to the study of the marine and
terrestrial records in order to document the rapid climate
x: þ86 25 8368 6016.
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environmental change in the Cretaceous World. First results of this
project were published in a special issue of Sedimentary Geology
(Wagreich et al., 2011).

The final workshop of IGCP 555 was held on October 31, 2010
during the Geological Society of America annual meeting in Denver,
Colorado, USA. A half-day GSA Pardee sessionwas sponsored by the
IGCP 555 and SEPM titled “Rapid Environmental/Climatic Change in
the Cretaceous Greenhouse World”. Over twenty persons contrib-
uted and discussed the causes, processes, and consequences of
rapid environmental/climate changes in the Cretaceous green-
house world, from both marine and terrestrial records.

Two special issues were scheduled related to the IGCP 555 final
workshop and the GSA Pardee session. One special issue mainly
focuses on the Cretaceous continental record titled as “Environ-
mental/climate change in the Cretaceous greenhouse world:
records from terrestrial scientific drilling of Songliao Basin and
adjacent area of China” which will be published in the journal
Palaeogeography, Palaeoclimatology, Palaeoecology. The present
special issue in Cretaceous Research focuses on the marine record
on the topic of rapid environmental/climate change in the Creta-
ceous greenhouse world.
2. Debate on Cretaceous temperature

Marine sediments are usually more complete and widely
distributed than terrestrial records, and have principally more
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accurate and precise age control by biostratigraphy and other
stratigraphic methods; thus, most of the information about Creta-
ceous climate is provided from the marine sediments up to now.
Among many other properties, stable oxygen isotope compositions
of marine sediments are extremely useful in reconstructing of the
long-term paleoenvironmental change (e.g. Clarke and Jenkyns,
1999; Huber et al., 2002), especially those oxygen isotopes from
glassy foraminiferal calcite from deep sea drilling cores (Pearson
et al., 2001; Norris et al., 2002; Wilson et al., 2002; Moriya et al.,
2007; Friedrich et al., 2012). Based on oxygen isotopic data of
planktonic foraminifers, the Cretaceous can be divided, in the first
order, into three stages (Huber et al., 2002): the cooler Early
Cretaceous, the hot mid-Cretaceous, and the warm Late Cretaceous,
though there are sub-cycles within each period. The Cenomanian-
Turonian appears to have been the warmest interval on Earth for at
least the past 100 myr, at that time tropical sea surface tempera-
tures may have reached above 35 �C and therefore surface ocean
temperatures were at least w7e8 �C warmer than today (Pearson
et al., 2001; Norris et al., 2002; Wilson et al., 2002). New benthic
isotope compilation separated the Cretaceous (115e65 Ma) into
four intervals (Friedrich et al., 2012): (1) the increasing tempera-
tures before 97 Ma (Early Cenomanian); (2) the subsequent hot
greenhouse interval (Late Cenomanian-Early Turonian) e inter-
mediate to bottom waters in the southern high latitudes and the
Pacific Ocean were as warm as 20 �C, whereas the tropical
protoeNorth Atlantic shows even higher temperatures; (3) the
long-lasting cooling trend between 91 Ma and 78 Ma (Early Cam-
panian); (4) the last 13 myr of the Cretaceous (78-65 Ma) are
characterized by small inter-basin gradients with relatively cool
temperatures of intermediate to bottom waters.

The Early Cretaceous was generally regarded as a relatively cool
time compared to the rest of the Cretaceous as indicated by the
inferred presence of glacial and cool-water deposits (diamictites
and glendonites) in high-latitude regions (e.g. De Lurio and Frakes,
1999; Alley and Frakes, 2003; Price and Nunn, 2010). However,
recently, TEX86 palaeotemperature proxy records indicated that sea
surface temperatures during the Early Cretaceous may have
exceeded 32 �C at 15e20 N and w 26 �C at w53 S (Littler et al.,
2011), and 26e30 �C at w60 S (Jenkyns et al., 2012). These
temperatures substantially exceed modern temperatures at
equivalent latitudes, and are even compatible with the paleo-
temperature reconstruction by the same method of TEX86 from the
mid-Cretaceous (Fig.1; Table 1; Schouten et al., 2003;Wagner et al.,
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Fig. 1. Cretaceous meridional sea surface temperature gradients based on the available
TEX86 data. The location number and references refer to the Table 1.
2008; Mutterlose et al., 2010). Glendonites are pseudomorphs of
the cool-temperature form of hydrated calcium carbonate, ikaite,
which typically forms at temperatures no greater than w7 �C (De
Lurio and Frakes, 1999). As explained by Jenkyns et al. (2012), the
ikaite is an early diagenetic mineral growing by displacement
within sediment; it may not give much information on sea surface
temperature. Föllmi (2012) emphasized arid and humid climate
fluctuations during reinforced greenhouse conditions in the Early
Cretaceous. Humid periods were associated with intensified
monsoon conditions and strong winds, arid periods were associ-
ated by intensive evaporation. Humid conditions and intensified
coastal upwelling caused some regions to become seasonally cooler
because of dense cloud cover, the loss of energy by latent heat
transfer and cooler ocean surface waters. Therefore unequal
distribution of colder and warmer areas was present.

However, studies in the Late Cretaceous display a cooling trend
in the Late Campanian and Maastrichtian (Jarvis et al., 2006; Keller,
2008; Wagreich, 2009). Given these strongly debated, contradic-
tory data the need for more and multiproxy, high-resolution,
continuous temperature records is obvious; however, short-term,
but significant temperature variations in the Cretaceous are very
likely based on these data.

3. Cretaceous rapid environmental/climate change

During the Cretaceous Period, rapid environmental/climatic
changes are manifest as the OAEs, CORBs, cold snaps or glaciations,
global eustatic changes, and carbonate platform drowning events,
among other events (Fig. 2).

3.1. Oceanic anoxic events (OAEs)

Environmental changes are strongly connected to the carbon
cycle; therefore, strong emphasis has been put on the Cretaceous
oceanic anoxic events, when organic-carbon rich sediments were
widely deposited in the global ocean basins (Schlanger and
Jenkyns, 1976; Jenkyns, 1980). These events have also been one of
the hottest topics of Earth Sciences for over 35 years (Jenkyns,
2010). OAEs record profound changes in the climatic and paleo-
ceanographic state of the planet and represent major disturbances
in the global carbon cycle. Up to now, four main periods of oceanic
anoxic events have been recognized, i.e., the Valanginian (Weissert
OAE), Late Hauterivian (Faraoni OAE), Aptian-Albian (OAE1a, 1b, 1c,
1d), Cenomanian-Turonian (OAE2), and ConiacianeSantonian
(OAE3), respectively (Jenkyns, 1980; Bralower et al., 1994; Erba,
2004; Jenkyns, 2010). Well known by the major d13C excursion
(Arthur et al., 1988), and marine biota extinction (Leckie et al.,
2002), it has been widely suggested that OAEs are associated with
a decrease in dissolved oxygen in the deep water (Schlanger and
Jenkyns, 1976), or a significant increase in the oceanic produc-
tivity (Leckie et al., 2002; Erba, 2004). Currently available data
suggest that the major forcing function behind OAEs was an abrupt
rise in temperature, induced by rapid influx of CO2 into the atmo-
sphere from volcanogenic and/or methanogenic sources (Adams
et al., 2010; Barclay et al., 2010; Jenkyns, 2010).

3.2. Oceanic red beds (ORBs)

CORBs have become one of themore recent hot topics in the field
of paleoclimate andpalaeoceanography (Hu et al., 2005, 2006, 2009;
Wang et al., 2005, 2009, 2011; Wagreich, and Krenmayr, 2005;
Wagreich et al., 2011; Neuhuber et al., 2007; Neuhuber and
Wagreich, 2011). It has been proven that CORBs generally occurred
after OAEs (Hu et al., 2005; Wang et al., 2011; Trabucho-Alexandre
et al., 2011). Brief occurrences of ORBs can be found within the



Table 1
Available TEX86 data from the Cretaceous sediments.

Number Place Paleolatitute Epoch Age SST by TEX86 Reference

m Arctic ocean 80 N Late Cretaceous Campanian-Maastrichtian 14e16 Jenkyns et al., 2004
l DSDP 693A East Antarctic 70 S Mid-Cretaceous L. Aptian - E. Albian 24e28 Jenkyns, 2010
k ODP 1207 central Pacific 0 (equatorial) Mid-Cretaceous E. Aptian 30e36 Dumitrescu et al., 2006
j DSDP 367 North Atlantic 5 N Mid-Cretaceous latest Cenomanian OAE2 34e36 Schouten et al., 2003
i ODP 1258-1259 North Atlantic 15 Ne4 N Mid- to Late Cretaceous Albian-Santonian 31e35 Forster et al., 2007
h DSDP 603B North Atlantic 20 N Mid-Cretaceous latest Cenomanian OAE2 35e36 Schouten et al., 2003
g DSDP 545 central Pacific 22 N Mid-Cretaceous Early Albian 29e32.5 Wagner et al., 2008
f ODP1049C North Atlantic 23 N Mid-Cretaceous Early Albian 32e34 Wagner et al., 2008
e DSDP 511 South Atlantic 60 S Early Cretaceous Callovian-Aptian 26e30 Jenkyns, 2010
d ODP 766 Indian Ocean 53 S Early Cretaceous Valanginian-Barremian 24e28 Littler et al., 2011
c DSDP 534 North Atlantic 15 N Early Cretaceous Valanginian-Barremian 33e34 Littler et al., 2011
b DSDP 603 North Atlantic 20 N Early Cretaceous L. Berriasian-Hauterivian 32e34 Littler et al., 2011
a NW Germany 33 N Early to mid-Cretaceous Barremian-E. Aptian 26e32 Mutterlose et al., 2010
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mid-Cretaceous strata interbedded with black shales in the
Tethyan realm (Hu et al., 2006). After OAE2, CORBs became the
predominant deep oceanic sediment type in the Late Cretaceous,
from Turonian to Campanian, with their global distribution
maximum in SantonianeCampanian times (Wang et al., 2009). The
most characteristic features of CORBs are their extremely low level of
organic carbon and higher content of iron oxides (mainly hematite)
(Hu et al., 2005; Cai et al., 2009). Various proxies indicate that
CORBs were deposited in the well-oxygenated environment with
much less nutrient recycling efficiency, i.e., less oceanic productivity
(Neuhuber et al., 2007; Hu et al., 2009; Wang et al., 2009).

3.3. Cretaceous glaciations and sea-level change

It has been argued that ice sheets may have been present at
particular times during the Cretaceous, based on the following
evidences (see overview by Hay, 2008): 1) cold-climate-related
sediments including ice dropstone, glendonites and diamictite
(e.g., De Lurio and Frakes, 1999; Alley and Frakes, 2003; Price and
Nunn, 2010). 2) Evidence of significant, short-term sea-level
changes from sequence stratigraphy and coastal offlap and onlap.
During the Cretaceous greenhouse interval, sea-level fluctuations
of tens of metres occurred over periods of less than 1myr, and thus,
to our knowledge, can only be explained by growth and delay of
continental ice sheets. However, in a warm equable greenhouse
world, sea-level changes of this magnitude would not be expected
to occur, but stratigraphic evidence indicates the occurrence of tens
of short-term sea-level swings (Miller et al., 2003; Yilmaz et al.,
2004; Yilmaz and Altiner, 2006; Gale et al., 2008; Galeotti et al.,
2009) that can clearly be traced especially within the shallow-
water peritidal carbonates. 3) Paleothermometry using mainly
d18O and TEX86 proxies suggest that four cooling pulses occurred
evenwithin the Cenomanian-Turonian hottest greenhouse interval
(Voigt et al., 2004; Forster et al., 2007; Bornemann et al., 2008).
However, two oxygen isotopic studies by Moriya et al. (2007) and
Ando et al. (2009) provide evidence against the interpretation of
ice-sheet growth as a driver of the sea-level change during these
extreme greenhouse periods.

Up to now, the debate of Cretaceous glaciations and sea-level
change is ongoing. Some believe that the Cretaceous greenhouse
worldmay have had “cool snaps”with the occurrence of ephemeral
continental ice sheets near or at Polar Regions. Others tend to
believe that the observed sea-level changes in the Cretaceous
greenhouse world need a new theory to explain.

3.5. Cretaceous carbonate platform drowning events

The drowning events of Cretaceous carbonate platforms and
their associated drowning unconformities play a significant role in
the stratigraphic organization of shallow platform carbonates
(Schlager, 1989; Weissert et al., 1998; Masse and Fenerci-Masse,
2011). In sequence stratigraphy such unconformities are usually
interpreted as “drowning unconformities” (Catuneanu, 2006),
which represent the key sequence boundaries (Type 3 sequence
boundaries of Schlager, 1999). Weissert et al. (1998) proposed that
the Early Cretaceous carbonate carbon isotope record characterized
by three positive high-amplitude excursions (>1.5&, late
ValanginianeHauterivian, early and late Aptian age) had a coinci-
dence with black shale formation, and widespread carbonate
platform drowning events. However, the temporal correlation of
oceanic anoxia and platform drowning has not been rigorously
tested and evidence indicating causality is debated. Recently, Huck
et al. (2011) reported a high-resolution carbon- and strontium-
isotope chronostratigraphy applied to the BarremianeAptian
Urgonian carbonate platform in France, and found that shallow-
water carbonate production in the Urgonian platform ceased
about 300 kyr before the onset of OAE 1a.
4. Contribution of this special issue

A total of fourteen manuscripts were submitted to this special
issue. Among them, eight papers were finally accepted after
reviewers’ and guest editors’ comments. Below is a brief intro-
duction to each paper.

Yongjian Huang, Chengshan Wang and Huaichun Wu investi-
gate the mechanism responsible for the regulation of long-term
climate stability by spectrum analysis on the global marine phos-
phorus burial records of the Cretaceous and compare these data
with paleoclimates, mainly the long-term oxygen isotope record.
They found four periodicities, with a strong 34e38 myr frequency
in both the carbon-phosphorous cycle and the paleoclimate
evolution, and they relate these cycles to tectonic activity.

The paper by Ismail O. Yilmaz, D. Altiner, U. K. Tekin, F. Oca-
koglu studied the stratigraphic transition from Hauterivian
carbonate platform to Aptian shale deposition in the Sakarya zone
of western Turkey, which is a general feature of western Tethys.
They successfully demonstrated the late Hauterivian platform
drowning event through the presence of hardgrounds, glauconite-
and phosphate-bearing facies over the platform carbonates, and
the successive transition to the pelagic limestones. They found
a black shale level with rich ammonites, manganese, iron, pyrite,
and glauconite minerals, which was deposited around the early
Barremian-late Barremian boundary, and which they interpreted as
the “mid-Barremian” oceanic anoxic event.

Xiumian Hu, Kuidong Zhao, Ismail O. Yilmaz, and Yongxiang Li
carried out a detailed study on the stratigraphic transition and the
paleoenvironmental changes from the early Aptian oceanic anoxic
event OAE 1a to oceanic red beds 1 (ORB1) along a pelagic section in
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Turkey. Changes in redox conditions from anoxic to highly oxic with
hematite formation are evident. Cyclicity and stable isotope records
are discussed and a scenario of enhanced volcanic CO2 emission
and/or pulsed methane dissociation for OAE 1a is discussed.

Relu-Dumitru Roban and Mihaela C. Melinte-Dobrinescu
studied the Lower Cretaceous lithofacies spanning the the Late
Barremian-Late Albian interval of the Audia Formation, Tarc�au
nappe, eastern Carpathians. From a regional tectonic context, they
propose that the sedimentation of black and grey shales in the
outer nappes, i.e., Moldavides, of the Eastern Carpathians, during
the Barremian-Albian interval, was a consequence of the inter-
mittent isolation of the basin, leading to periods of restricted
circulation.

Jozef Michalík, Otília Lintnerová, Daniela Reháková, Daniela
Boorová, Vladimír �Simo expound on the Early Cretaceous sedi-
mentary evolution at the margin of a pelagic basin (the Manín Unit,
central Western Carpathians, Slovakia). They indicate presence of
a late Valanginian anoxic oceanic event in the Butkov sections and
interpreted the absence of any black shale record as a response to
local oxic conditions in the marginal part of the basin. The carbon
isotope excursion is interpreted as an effect of local changes. A late
Aptian carbonate progradation was followed by a collapse during
middle Albian.

Polina Pavlishina and Michael Wagreich documented the
biostratigraphy and paleoenvironments in a northwestern Tethyan
Cenomanian-Turonian boundary section (Austria) based on paly-
nology and calcareous nannofossils. They conclude that nannofossil
indices and dinoflagellate associations indicate rather low-
productivity, low-nutrient settings during at least the later part of
OAE 2, and display parallel interpretations based on foraminiferal
assemblages.

The paper by Yuanfeng Cai, Xiaoxiao Hu, Xiang Li, and Yuguan
Pan concentrated on the study of the origin of the red colour of the
Scaglia Rossa from the Vispi Quarry section, Gubbio, central Italy.
They studied the morphology and distribution of hematite using
high-resolution transmission electron microscopy and selected-
area electron diffraction. The authors indicate that nano-grains of
hematite impart the limestones with a homogeneous red. This may
indicate that these nano-grains of ferric minerals are authigenic,
implying oxic or sub-oxic conditions at the time when the red
limestones were deposited.

The paper by Michael Wagreich, Johann Hohenegger and Ste-
phanie Neuhuber brings new and high-resolution data on the
timing of the Radotruncana calcarata biozone within the Late
Campanian interval. They studied a section in the Eastern Alps of
Austria and established an integrated stratigraphy by way of
plankton foraminifer and nannofossil biostratigraphy, carbon and
strontium isotopic stratigraphy, and orbital cyclostratigraphy.
Based on the thickness of marl-limestone cycles they found that the
Calcarata Biozone has a duration of c. 806 kyr.
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